A Member of The Texas State University System Expanding minds Shaping fulue

In Situ Spectroscopy for the Conversion of CO₂ to Syngas via Trireforming

<u>Tracy J Benson</u>, Yishan Zhang, Juan Cruz, Thomas Zacharia

Dan F. Smith Department of Chemical Engineering Lamar University, Beaumont, Texas

> ACS Fall Meeting Philadelphia, PA Aug 23, 2012

Introduction to CO₂ Problem

Kaiser, G.H. (2007)

How Do We Fix the Problem?

CO₂ Sequestration Technologies

- ✓ Capture & Store Amine absorption, underground storage
- ✓ Dilution decrease fossil fuels, increase biofuels
- ✓ Conversion CO_2 to usable compounds

Tri-Reforming: Turning CO₂ into a Fuel

$CH_4 + CO_2 \rightarrow 2CO + 2H_2$	Δ H = +247 kJ/mol
$CH_4 + H_2O \rightarrow CO + 3H_2$	Δ H = +206 kJ/mol
$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$	$\Delta H = - 36 \text{ kJ/mol}$
$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	Δ H = - 880 kJ/mol
$CH_4 \rightarrow C + 2H_2$	$\Delta H = +75 \text{ kJ/mol}$
2CO → C + <mark>CO</mark> 2	$\Delta H = -172 \text{ kJ/mol}$
$C + CO_2 \rightarrow + 2CO$	$\Delta H = +172 \text{ kJ/mol}$
$C + H_2O \rightarrow CO + H_2$	$\Delta H = +131 \text{ kJ/mol}$
$C + O_2 \rightarrow CO_2$	$\Delta H = -394 \text{ kJ/mol}$

Conversion: 70% CO_2 , 98% CH_4 $H_2/CO = 2.0$

- \succ Natural gas co-fed with reformer effluent and fresh O₂ from air
- > Autothermal process driven by partial oxidation
- Catalyst development is key to success!!

Reaction Network – Thermodynamic Perspective

Rxn #	Specific Reaction	ΔH, kJ/mol	Equilibrium K @ 700°C	-
R1	$CH_4 + H_2O \rightarrow CO + 3H_2$	+206	1.78	-
R2	$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$	- 36	5.13e16	
R3	$CH_4 + CO_2 \rightarrow 2CO + 2H_2$	+ 247	1.43	
R4	$CH_4 \rightarrow C_{(ads)} + 2H_2$	+ 75	1.51	$\Rightarrow CO_2$ producing
R5	$2CO \rightarrow C_{(ads)} + CO_2$	- 172	1.06	\diamond CO ₂ Converting
R6	$C_{(ads)} + CO_2 \rightarrow 2CO$	+172	0.94	-
R7	$C_{(ads)} + H_2O \rightarrow CO + H_2$	+ 131	1.18	
R8	$C_{(ads)} + O_2 \rightarrow CO_2$	- 394	2.11e21	

Taylor Catalyst to function @ <700°C

GOAL:

Developing Nanoparticle Catalyst

- ✓ Synergism between active metal and support
 - Oxygen vacancies within support
 - Adsorption of carbons by active metal
- ✓ Reverse Micelles for nanoparticle formation
 - Increased active sites per unit mass
 - Intimate contact between reacting species

Nanoparticle Catalyst Synthesis

Reverse Micelles (water in oil micro-emulsions)

Nanoparticle Catalyst Synthesis

RM Ni₂B and Ni in <u>Ambient</u> Environment

60 mins

6 hrs

9 hrs

12 hrs

15 hrs

21 hrs

Procedure: RM Ni²⁺ and RM solution stirred for **1 hour** Add BH₄⁻ solution to RM solution and stirred for **30 secs** Mix RM Ni²⁺ and RM BH₄⁻ solutions

18 hrs

Reduction of RM Ni²⁺ to RM Ni₂B and Ni

0 min

7 mins

14 mins

19 mins

16 min17 mins18 minsProcedure: RM Ni2+ and RM solution stirred for 1 hour
Add BH_4^- solution to RM solution and stirred for 30 secs
Mix RM Ni2+ and RM BH_4^- solutions

UV-Vis of Nickel Reverse Micelle Formation

 $Ni(NO_3)_2$ at various concentrations in aqueous solutions and AOT/cyclohexane

Absorption peaks at 207, 300, & 400 nm

RM's (0.1 M AOT/Cyclohexane prepared with 1.3 mM Ni²⁺

Calibration for Ni²⁺ can be made at the 400 nm absorption peak

XRD Analysis of RM Nickel Reduction

XRD results of Completed Catalyst

Ni Content (SEM-EDX) (a) 5% (7) (b) 10% (11) (c) 15% (13) (d) 20% (21)

Ni Particle Sizes, nm

111		200	220		
	16.94	19.17	24.75		
	11.25		17.32		
	23.16	19.17	19.91		
	18.66	21.64	24.75		
AVG	17.50	19.99	21.68		
St Dev	4.92	1.43	3.70		

Identification of Active Sites Using Operando Spectroscopy

- > Which are the active sites of the catalyst?
- How does the adsorbed gases react with the active sites?
- What intermediate species will be generated during the reaction and why does this happen?
- How can the catalyst be manipulated to increase CO₂ conversion with decreased reaction temperatures?

In situ FTIR can be a very useful tool to elucidate the complicated mechanism of a catalytic reaction

Our In situ FTIR System

ZnSe Crystal Windows

CO₂ adsorption on TiO₂

CO adsorption on TiO₂

- At higher temps 2116 cm⁻¹ decreased intensity and 2172 shifts to 2180 cm⁻¹
- Band at 2172 cm⁻¹ Unsaturated Ti⁴⁺ sites
- ◆ Band at 2116 cm⁻¹ Ti³⁺ sites
- Weaker CO adsorption as temp increases and CO₂^{gas} (2306 cm⁻¹) more prevalent

 $2CO \rightarrow CO_2 + C_{ads}$

CO₂ adsorption on Ni/TiO₂ (reduced in H₂ @ 500°C)

TiO_x oxidized by CO₂ (2170 cm⁻¹)
 1022 cm⁻¹ Ti – O lattice vibration (i.e. oxygen mobility)
 3-fold CO adsorption Ni – stretching 1815 – 1845 cm⁻¹
 Strong metal-support interaction

CO adsorption on Ni/TiO₂ (reduced in H₂ @ 500°C)

- ✓ Ni⁰ stabilizes adsorbed C
- ✓ Adsorbed CO₂ shown by bands 1585 – 1320 cm⁻¹
- ✓ Ni metal becomes oxidized when temperature increase

Huang, et al. (2005) Catal. Let. 105

 Ni²⁺ — CO
 2200 cm⁻¹

 Ni⁰ — CO linear
 2090 cm⁻¹

 OH — CO
 2169 cm⁻¹

 Ni⁰ — CO bridged
 1990 cm⁻¹

 Linear CO
 2040 \sim 2055 cm⁻¹

Synthesis of C-Tolerant Catalyst

Catalyst tuning via co-deposition of metals
 Overlap of d-band e⁻ s catalyzes reverse
 Boudouard reaction or gasification of carbon

 $C + CO_2 \rightarrow 2CO$ $C + H_2O \rightarrow CO + H_2$

DFT modeling C-diffusion on Ni, SnNi and activation energy C-attachment at nucleation site

Nikolla et al. (2006) JACS, 128, 11355

Identification of NiSn Species on TiO₂

Tri-Reforming Process Modeling

Tri-reforming Process Modeling

Assumptions:

- Pure methane feed
- Flue gas enters at 150°C
- Reactor temperature = 850°C (96% methane conversion reported at this temperature using Ni-γAl₂O₃ catalyst^[1])
- Aspen Plus model, R-Gibbs used for reformer- calculates equilibrium concentration based on Gibbs free energy minimization
- CO₂ membrane modeled on MTR's Polaris[™] membrane^[2]: (80% CO₂ recovery with 95 vol% purity of CO₂)

References: ^[1] Maciel, L., et al., *Kinetic evaluation of the tri-reforming process of methane for syngas production.* Reaction Kinetics, Mechanisms and Catalysis, 2010. 101(2): p. 407-416. ^[2] MTR: CO₂ removal from syngas, <u>http://www.mtrinc.com/co2_removal_from_syngas.html</u>

Feed Stream Conditions

	FLUEGAS	METHANE	OXYGEN	STEAM	МІХ
Temperature C	150	25	25	150	107.6
Pressure atm	1	1	1	1	1
Vapor Frac	1.013	1.013	1.013	1	1
Mole Flow kmol/hr	1	1	1	1	1
Mass Flow kg/hr	200	100	10	20	331
Enthalpy MMkcal/hr	5514	1604	312	360	7849
Mole Flow kmol/hr					
H2	0	0	0	0	0
02	4	0	10	0	14
N2	144	0	0	0	144
СО	0	0	0	0	0
CO2	16	0	0	0	17.1
H2O	36	0	0	20	56
CH4	0	100	0	0	100

Tri-reforming Process Flow Diagram

Trireforming vs Sequestration

CONCLUDING REMARKS

Conversion CO₂ is difficult

- Molecular stability and thermodynamics
- > Industrially supported if economical

Thoughtful conversion strategies

- Kinetically driven reactions
- Membrane reactors

Novel Catalyst Synthesis

Nanoparticle construction

Additional Laboratory Work

- Microkinetic evaluation
- Catalyst design, development, & characterization

ACKNOWLEDGEMENTS

COLLABORATORS

✓ Dr. John Rabalais – Lamar Chemistry

✓ Dr. John Guo – Lamar CHE

✓ Dr. David Cocke – Lamar CHE

✓ Dr. Andrew Gomes – Lamar MIC

✓ Dan Rutman – Lamar MIC

✓ Doanh Tran – Lamar Fuel Cell Center

UV-VIS INSTRUMENTATION

JSJ Technologies LLC

Texas HEAF fund:

FTIR and Raman Instrumentation

